1.0 / July 31, 2014
(2.0/5) (5)

Description

Trainer in mathematics Exercises on the Board.The skills ofaddition and subtraction to 10 with the help of interactivesimulators in mathematics contributes to the training of preschoolchildren for school.Mathematics is a phenomenon of human culture.Joining her is first of all the introduction to the imperishablecultural values, and thus, its role in the development of thepersonality of the growing human extremely important. In addition,the well-being of this person depends on the adequacy of itsbehavior in modern society, its readiness to exist in society.Mathematics is one of the most important fields of modern man.Widespread widespread use of technology, including computer,demands a certain level of mathematical knowledge and views.Fromearly childhood to old age, we are in one way or another areconnected with mathematics (even dial a phone number requiresknowledge of numbers and the ability to memorize digital sequence).The child is faced with mathematics in early childhood, mathematicsneeded and housewife (otherwise it is reasonable to build yourbudget will include a microwave, washing machine, choose theappropriate Bank and so on), and the carpenter, and businessman anda scientist, dealing with the problems of the universe andsociety.Arithmetic or arithmetics (from the Greek word ἀριθμός,arithmos "number") is the oldest and most elementary branch ofmathematics (compared to algebra, geometry, and analysis). Itconsists in the study of numbers, especially the properties of thetraditional operations between them — addition, subtraction,multiplication and division. Arithmetic is an elementary part ofnumber theory. However the terms arithmetic and higher arithmeticwere used until the beginning of 20th century as synonyms fornumber theory, and are, sometimes, still used to refer to a widerpart of number theory The prehistory of arithmetic is limited to asmall number of artifacts which may indicate the conception ofaddition and subtraction, the best-known being the Ishango bonefrom central Africa, dating from somewhere between 20,000 and18,000 BC, although its interpretation is disputed.The earliestwritten records indicate the Egyptians and Babylonians used all theelementary arithmetic operations as early as 2000 BC. Theseartifacts do not always reveal the specific process used forsolving problems, but the characteristics of the particular numeralsystem strongly influence the complexity of the methods. Thehieroglyphic system for Egyptian numerals, like the later Romannumerals, descended from tally marks used for counting. In bothcases, this origin resulted in values that used a decimal base butdid not include positional notation. Complex calculations withRoman numerals required the assistance of a counting board or theRoman abacus to obtain the results.Early number systems thatincluded positional notation were not decimal, including thesexagesimal (base 60) system for Babylonian numerals and thevigesimal (base 20) system that defined Maya numerals. Because ofthis place-value concept, the ability to reuse the same digits fordifferent values contributed to simpler and more efficient methodsof calculation.The continuous historical development of modernarithmetic starts with the Hellenistic civilization of ancientGreece, although it originated much later than the Babylonian andEgyptian examples. Prior to the works of Euclid around 300 BC,Greek studies in mathematics overlapped with philosophical andmystical beliefs. For example, Nicomachus summarized the viewpointof the earlier Pythagorean approach to numbers, and theirrelationships to each other, in his Introduction to Arithmetic.

App Information Math for kids. The addition.

  • App Name
    Math for kids. The addition.
  • Package Name
    am.androidlib.theteacherofmathematics
  • Updated
    July 31, 2014
  • File Size
    3.8M
  • Requires Android
    Android 2.2 and up
  • Version
    1.0
  • Developer
    Cor
  • Installs
    1,000+
  • Price
    Free
  • Category
    Education
  • Developer
  • Google Play Link
Cor Show More...
Физика 7 класс 9.1 APK
Cor
Термин «физика» впервые появился в сочинениях одного из величайшихмыслителей древности — Аристотеля, жившего в IV веке до нашей эры.Первоначально термины «физика» и «философия» были синонимичны,поскольку в основе обеих дисциплин лежало стремление объяснитьзаконы функционирования Вселенной. Однако в результате научнойреволюции XVI века физика выделилась в отдельное научноенаправление. В русский язык слово «физика» было введено М. В.Ломоносовым, издавшим первый в России учебник физики — свой переводс немецкого языка учебника «Вольфианская экспериментальная физика»Х. Вольфа (1746). Первым оригинальным учебником физики на русскомязыке стал курс «Краткое начертание физики» (1810), написанный П.И. Страховым. В современном мире значение физики чрезвычайновелико. Всё то, чем отличается современное общество от обществапрошлых веков, появилось в результате применения на практикефизических открытий. Так, исследования в области электромагнетизмапривели к появлению телефонов и позже мобильных телефонов, открытияв термодинамике позволили создать автомобиль, развитие электроникипривело к появлению компьютеров. Физическое понимание процессов,происходящих в природе, постоянно развивается. Большинство новыхоткрытий вскоре получают применение в технике и промышленности.Однако новые исследования постоянно поднимают новые загадки иобнаруживают явления, для объяснения которых требуются новыефизические теории. Несмотря на огромный объём накопленных знаний,современная физика ещё очень далека от того, чтобы объяснить всеявления природы. Общенаучные основы физических методовразрабатываются в теории познания и методологии науки. Физика — этонаука о природе (естествознание) в самом общем смысле (частьприродоведения). Предметом её изучения является материя (в видевещества и полей) и наиболее общие формы её движения, а такжефундаментальные взаимодействия природы, управляющие движениемматерии. Некоторые закономерности являются общими для всехматериальных систем, например, сохранение энергии, — их называютфизическими законами. Физику иногда называют «фундаментальнойнаукой», поскольку другие естественные науки (биология, геология,химия и др.) описывают только некоторый класс материальных систем,подчиняющихся законам физики. Например, химия изучает атомы,образованные из них вещества и превращения одного вещества вдругое. Химические же свойства вещества однозначно определяютсяфизическими свойствами атомов и молекул, описываемыми в такихразделах физики, как термодинамика, электромагнетизм и квантоваяфизика. Физика тесно связана с математикой: математикапредоставляет аппарат, с помощью которого физические законы могутбыть точно сформулированы. Физические теории почти всегдаформулируются в виде математических выражений, причём используютсяболее сложные разделы математики, чем обычно в других науках. Инаоборот, развитие многих областей математики стимулировалосьпотребностями физических теорий. The term "physics" first appearedin the writings of one of the greatest thinkers of antiquity -Aristotle, who lived in the IV century BC. Originally, the term"physics" and "philosophy" were synonymous, because the basis ofboth disciplines began as an effort to explain the operation of thelaws of the universe. However, as a result of the scientificrevolution of the XVI century physics was allocated in a separatescientific field. In the Russian language the word "physics" wasintroduced by MV Lomonosov, published the first Russian textbook ofphysics - a translation from the German language textbook "WolffianExperimental Physics" H. Wolf (1746). The first original physicstextbooks in Russian became the course "Brief Outline of Physics"(1810), written by PI Insurance. In today's world of physics isextremely great value. All that is different than the modernsociety from the society of the past centuries, appeared as aresult of the application in practice of physical discoveries. Forexample, research in the field of electromagnetism led to thedevelopment of telephones and later mobile phones, opening inthermodynamics helped to create the car electronics development hasled to the advent of computers. The physical understanding of theprocesses occurring in nature, is constantly evolving. Most of thenew discoveries will soon get used in engineering and industry.However, new research is constantly raise new puzzles and discoverthe phenomena to explain that require new physical theory. Despitethe huge amount of accumulated knowledge, modern physics is stillvery far from being able to explain all natural phenomena. Generalscientific foundations of physical methods developed in the theoryof knowledge and methodology of science. Physics - the science ofnature (natural science) in the general sense (part of naturalhistory). The subject of her study is the matter (in the form ofsubstances and fields) and the most common forms of its motion, andthe fundamental interactions of nature that govern the motion ofmatter. Some patterns are common to all material systems, such assaving energy - they are called the laws of physics. Physics issometimes called the "fundamental science", because the othernatural sciences (biology, geology, chemistry, etc.) Only describea certain class of material systems that obey the laws of physics.For example, the chemistry studies atoms derived from thesesubstances and the conversion of one substance into another. Thechemical properties of the substance as uniquely determined by thephysical properties of atoms and molecules, described in suchfields of physics as thermodynamics, electromagnetism and quantumphysics. Physics is closely related to Mathematics: Mathematicsprovides the unit by which the laws of physics can be preciselyformulated. Physical theories are almost always formulated in theform of mathematical expressions, with using more sophisticatedbranches of mathematics, than usual in other sciences. Conversely,the development of many areas of mathematics was stimulated by theneeds of physical theories.
Геометрия 7 класс 25.1 APK
Cor
Геоме́трия (от др.-греч. γῆ — Земля и μετρέω — «измеряю») — разделматематики, изучающий пространственные структуры, отношения и ихобобщения. Геометрия как систематическая наука появилась в ДревнейГреции, её аксиоматические построения описаны в «Началах» Евклида.Евклидова геометрия занималась изучением простейших фигур наплоскости и в пространстве, вычислением их площади и объёма.Предложенный Декартом в 1637 году координатный метод лёг в основуаналитической и дифференциальной геометрии, а задачи, связанные счерчением привели к созданию начертательной и проективнойгеометрии. При этом все построения оставались в рамкахаксиоматического подхода Евклида. Коренные изменения связаны сработами Лобачевского в 1826 году, который отказался от аксиомыпараллельности и создал новую неевклидову геометрию, определивтаким образом путь дальнейшего развития науки и создания новыхтеорий. Классификация геометрии, предложенная Клейном в«Эрлангенской программе» в 1872 году и содержащая в своей основеинвариантность геометрических объектов относительно различных групппреобразований, сохраняется до сих пор. Геометрия занимаетсявзаимным расположением тел, которое выражается в прикосновении илиприлегании друг к другу, расположением «между», «внутри» и т. п.;величиной тел, то есть понятиями о равенстве тел, «больше» или«меньше»; а также преобразованиями тел. Геометрическое телопредставляет собой абстракцию ещё со времён Евклида, которыйполагал, что «линия есть длина без ширины», «поверхность есть то,что имеет длину и ширину». Точка представляет собой абстракцию,связанную с неограниченным уменьшением всех размеров тела, илипределом бесконечного деления. Расположение, размеры ипреобразования геометрических фигур определяются пространственнымиотношениями. Исследуя реальные предметы, геометрия рассматриваеттолько их форму и взаимное расположение, отвлекаясь от другихсвойств предметов, таких как плотность, вес, цвет. Это позволяетперейти от пространственных отношений между реальными объектами клюбым отношениям и формам, возникающим при рассмотрении однородныхобъектов, и сходным с пространственными. В частности, геометрияпозволяет рассматривать расстояния между функциями Общепринятую внаши дни[источник не указан 370 дней] классификацию различныхразделов геометрии предложил Феликс Клейн в своей «Эрлангенскойпрограмме» (1872). Согласно Клейну, каждый раздел изучает тесвойства геометрических объектов, которые сохраняются (инвариантны)при действии некоторой группы преобразований, специфичной длякаждого раздела. В соответствии с этой классификацией, вклассической геометрии можно выделить следующие основные разделы.Евклидова геометрия, в которой предполагается, что размеры отрезкови углов при перемещении фигур на плоскости не меняются. Другимисловами, это теория тех свойств фигур, которые сохраняются при ихпереносе, вращении и отражении. Планиметрия — раздел евклидовойгеометрии, исследующий фигуры на плоскости. Стереометрия — разделевклидовой геометрии, в котором изучаются фигуры в пространстве.Проективная геометрия, изучающую проективные свойства фигур, тоесть свойства, сохраняющиеся при их проективных преобразованиях.Аффинная геометрия, изучающая свойства фигур, сохраняющиеся приаффинных преобразованиях. Начертательная геометрия — инженернаядисциплина, в основе которой лежит метод проекций. Этот методиспользует две и более проекций (ортогональных или косоугольных),что позволяет представить трехмерный объект на плоскости.Сферический треугольник Современная геометрия включает в себяследующие дополнительные разделы. Многомерная геометрия.Неевклидовы геометрии. Сферическая геометрия. ГеометрияЛобачевского. Риманова геометрия. Геометрия многообразий. Geometry(from al-Greek.. Γῆ - Land and μετρέω - «measure") - a branch ofmathematics that studies the spatial patterns, relationships andtheir generalizations. Geometry as a systematic science emerged inancient Greece, its axiomatic construction described in the"Elements" of Euclid. Euclidean geometry has been studying thesimplest figures on a plane and in space, the computation of areasand volumes. Proposed in 1637 by Descartes coordinate method formedthe basis of analysis and differential geometry, and tasksassociated with mechanical drawing led to the creation ofdescriptive and projective geometry. Thus all construction remainedwithin the axiomatic approach of Euclid. Radical changes associatedwith the work of Lobachevsky in 1826, which declined to theparallel axiom and created a new non-Euclidean geometry, thusdetermining the way of further development of science and thecreation of new theories. Classification geometry proposed by Kleinin "Erlangen Program" in 1872 and containing basically invariantgeometric objects with respect to different groups oftransformations, continues to this day. The geometry of the mutualarrangement of bodies involved, which is expressed in touch oradjacent to one another, the location "between", "inside", etc.;tel value, ie the concepts of equality bodies, "more" or "less";and transformations of bodies. Geometric object is an abstractionsince the time of Euclid, who believed that "the line is a lengthwithout width", "surface is that which has length and width." Pointis an abstraction associated with a decrease in all the unlimitedsize of the body, or the limit of infinite division. Location, sizeand transform geometric shapes defined spatial relationships.Exploring the real objects, geometry considers only their shape andrelative position, abstracting from other properties of objects,such as density, weight, color. This allows you to move from thespatial relationships between real objects to any relationship andforms that arise when considering similar objects and similarspatial. In particular, the geometry allows us to consider thedistance between the functions Generally accepted today [citationneeded 370 days] classify the different branches of geometrysuggested Felix Klein in his "Erlangen Program" (1872). Accordingto Klein, each section examines the properties of geometric objectsthat are preserved (invariant) under the action of certain groupsof transformations specific to each section. According to thisclassification, in classical geometry are the following majorsections. Euclidean geometry, in which it is assumed that the sizeof segments and angles when moving figures in the plane do notchange. In other words, it is a theory of the properties of shapesthat are saved when their shift, rotation and reflection. Planegeometry - Euclidean geometry section examining figures on a plane.Geometry - section of Euclidean geometry, which studies shapes inspace. Projective geometry, which studies the projective propertiesof figures, that is, properties that are preserved under theirprojective transformations. Affine geometry, which studies theproperties of figures that are preserved under affinetransformations. Descriptive Geometry - engineering discipline,which is based on a projection method. This method uses two or moreprojections (orthogonal or oblique), which allows us to representthree-dimensional object on a plane.    Sphericaltriangle Modern geometry includes the following additionalsections. Multidimensional geometry. Non-Euclidean geometry.Spherical geometry. Hyperbolic geometry. Riemannian geometry.Geometry of manifolds.
Алгебра 7 класс 15.1 APK
Cor
А́лгебра (от араб. اَلْجَبْرْ‎‎, «аль-джабр» — восполнение) —раздел математики, который можно грубо охарактеризовать какобобщение и расширение арифметики. Слово «алгебра» такжеупотребляется в названиях различных алгебраических систем. В болеешироком смысле под алгеброй понимают раздел математики, посвящённыйизучению операций над элементами множества произвольной природы,обобщающий обычные операции сложения и умножения чисел.Элементарная алгебра — раздел алгебры, который изучает самыебазовые понятия. Обычно изучается после изучения основных понятийарифметики. В арифметике изучаются числа и простейшие (+, −, ×, ÷)действия с ними. В алгебре числа заменяются на переменные (a, b, c,x, y и так далее). Такой подход полезен, потому что: Позволяетполучить общее представление законов арифметики (например, a+b=b+aдля любых a и b), что является первым шагом к систематическомуизучению свойств действительных чисел. Позволяет ввести понятие«неизвестного», сформулировать уравнения и изучать способы ихрешения. (Для примера, «Найти число x, такое что 3x + 1 = 10» или,в более общем случае, «Найти число x, такое, что ax + b = c». Этоприводит к выводу, что нахождение значения переменной кроется не вприроде чисел из уравнения, а в операциях между ними.) Позволяетсформулировать понятие функции. (Для примера, «Если вы продали xбилетов, то ваша прибыль составит 3x − 10 рублей, или f(x) = 3x −10, где f — функция, и x — число, от которого зависит функция.»)Algebra (from Arabic. الجبر, «Al-Jabr" - replenishment) - a branchof mathematics that can be roughly described as a generalizationand extension of arithmetic. The word "algebra" is also used in thenames of various algebraic systems. In a broader sense, understandalgebra math section devoted to the study of operations on theelements of an arbitrary nature, which generalizes the usualoperations of addition and multiplication of numbers. Elementaryalgebra - algebra section that examines the most basic concepts.Usually studied after learning the basic concepts of arithmetic. Inthe study of arithmetic and simple (+, -, ×, ÷) action with them.The algebra of the variables are replaced by (a, b, c, x, y, and soforth). Such an approach is useful because: It allows you to get anoverview of the laws of arithmetic (for example, a + b = b + a forall a and b), that is the first step to a systematic study of theproperties of real numbers. It allows you to introduce the conceptof the "unknown" to formulate equations and explore ways to addressthem. (For example, "Find a number x, such that 3x + 1 = 10" or,more generally, "Find a number x, such that ax + b = c». This leadsto the conclusion that the determination of the value of thevariable does not lie naturally numbers from the equation andoperations therebetween). It allows us to formulate the concept offunction. (For example, "If you sell x tickets, then your profitwill be 3x - 10 rubles, or f (x) = 3x - 10, where f - function, andx - number, which determines the function.")
Table Gorbova-Schulte 1.0 APK
Cor
Table Gorbova-Schulte - one of the most popular tests to assess thespeed of switching attention. It is given for the conclusion ofpsychological fitness for occupations that require highconcentration and quick reactions, such as air traffic controllers,train drivers. Table Gorbova-Schulte - is a modified version of thesame color tables Schulte, who is a square.The subject is asked toindicate, in ascending order of the number of black and red indescending order. The number of each color group the turn - firstone is white, then 12 blue, 2 white -> 11 Blue -> 3 white -etc. Most of the programs used for testing audio with voice,uttering random numbers.
balls and numbers 1.2 APK
Cor
balls and numbersStudy the language of mathematics- Look, please,how many balls in my box and put it in his box is equal to thenumber of balls.To child well distinguish different numbers in hismind must occur images of these numbers. Of course, the child andwithout us can create these images, but we can help him to find amore suitable and capacious. It is best suited for this coloreddots.However, the child has a great need to touch everything and inall things to see it all for yourself.This program is designed toteach children at a very early age.To begin teaching your child toread with 2 years of age. It is important to remember that a childat this age, first of all, remember that it will surprise or beinterested. Figures for him seem strange icons. Therefore, to teachworth using images or materials.In addition, playing with objects,the child develops minor hand motility, which positively affectsthe development of speech. With four years, you can teach a childto read in mind. This will help to develop logic, mind andmemory.Any training goes through three stages: addictive,understanding and meaningful learning. At that mathematics shouldnot be something abstract, but a natural part of life, otherwise hesoon forget everything we taught him.First, playing and talkingwith your child, teaching him to compare objects and theirproperties, to distinguish big thing from a small, long, short,heavy from easy, all from rectangular and much more.As a result,most children after three and a half years can be considered, andeven to add, and subtract four or five. However, they may not knowabout it, and they need help to show their knowledge, but firstchild must learn to think intelligently and not mechanically.Sotwo-year-old kid can, poking a finger in the subject, consistentlysay:- One, two, three, four.However, to the question: "whatthings?" - the child to respond until may. Only three and a half tofour years the child is ready to start a meaningful and notmechanical mathematics education. He is already able to learn howto add and subtract in mind the numbers within five, but to do thesame steps with large numbers, usually up to four to four and ahalf years the baby is not able to do.For children of preschool ageis quite normal to assume that any mathematical action is only trueat the moment and only with these items. Kids believe that, if pushitems, they will be more, and if I put them closer to each other,they will be less. If you move or change the position of subject,you will also change. Baby, folding 4 and 3, be sure to count allthe items first:- 1, 2, 3, 4, 5, 6, 7, - and only after this willgive the answer.The child will become more Mature to think and talkdifferently:- Here 4 of the subject, then 4 + 1 + 1 + 1 =7.Development of spatial thinkingSpatial thinking manifests itselfquite early. So two-three year old baby is able to show the wayhome or in kindergarten. To five years of a child may be put withthe help of cubes, and later, to draw the plan of your room orPlayground "from nature". To the school the child is already easyin mind, what is behind it, on the left, on the right, and what isahead. May the memory to draw a plan of the room, Playground, orother place. Able to answer the following questions: which of theboys is in this row, third from right from you? who in that racestands second on the left?In order to prepare your child forstudying the geometry, it is not enough to learn to distinguishseveral geometric shapes. First of all we should try to develop hisideas about space. The child must seize such concepts as: up, down,over, under, between, approximately, next, front, back, forward,backward, left, right, inside, outside, etc.These words can beeasily embedded into any children's games.
Math for kids. The addition. 1.0 APK
Cor
Trainer in mathematics Exercises on the Board.The skills ofaddition and subtraction to 10 with the help of interactivesimulators in mathematics contributes to the training of preschoolchildren for school.Mathematics is a phenomenon of human culture.Joining her is first of all the introduction to the imperishablecultural values, and thus, its role in the development of thepersonality of the growing human extremely important. In addition,the well-being of this person depends on the adequacy of itsbehavior in modern society, its readiness to exist in society.Mathematics is one of the most important fields of modern man.Widespread widespread use of technology, including computer,demands a certain level of mathematical knowledge and views.Fromearly childhood to old age, we are in one way or another areconnected with mathematics (even dial a phone number requiresknowledge of numbers and the ability to memorize digital sequence).The child is faced with mathematics in early childhood, mathematicsneeded and housewife (otherwise it is reasonable to build yourbudget will include a microwave, washing machine, choose theappropriate Bank and so on), and the carpenter, and businessman anda scientist, dealing with the problems of the universe andsociety.Arithmetic or arithmetics (from the Greek word ἀριθμός,arithmos "number") is the oldest and most elementary branch ofmathematics (compared to algebra, geometry, and analysis). Itconsists in the study of numbers, especially the properties of thetraditional operations between them — addition, subtraction,multiplication and division. Arithmetic is an elementary part ofnumber theory. However the terms arithmetic and higher arithmeticwere used until the beginning of 20th century as synonyms fornumber theory, and are, sometimes, still used to refer to a widerpart of number theory The prehistory of arithmetic is limited to asmall number of artifacts which may indicate the conception ofaddition and subtraction, the best-known being the Ishango bonefrom central Africa, dating from somewhere between 20,000 and18,000 BC, although its interpretation is disputed.The earliestwritten records indicate the Egyptians and Babylonians used all theelementary arithmetic operations as early as 2000 BC. Theseartifacts do not always reveal the specific process used forsolving problems, but the characteristics of the particular numeralsystem strongly influence the complexity of the methods. Thehieroglyphic system for Egyptian numerals, like the later Romannumerals, descended from tally marks used for counting. In bothcases, this origin resulted in values that used a decimal base butdid not include positional notation. Complex calculations withRoman numerals required the assistance of a counting board or theRoman abacus to obtain the results.Early number systems thatincluded positional notation were not decimal, including thesexagesimal (base 60) system for Babylonian numerals and thevigesimal (base 20) system that defined Maya numerals. Because ofthis place-value concept, the ability to reuse the same digits fordifferent values contributed to simpler and more efficient methodsof calculation.The continuous historical development of modernarithmetic starts with the Hellenistic civilization of ancientGreece, although it originated much later than the Babylonian andEgyptian examples. Prior to the works of Euclid around 300 BC,Greek studies in mathematics overlapped with philosophical andmystical beliefs. For example, Nicomachus summarized the viewpointof the earlier Pythagorean approach to numbers, and theirrelationships to each other, in his Introduction to Arithmetic.
Quick tasty dinner 1.1 APK
Cor
Recipes for quick and delicious dinner. Recipes for deliciousdishes for dinner every day. We walk or drive home from work, onthe road got a little time to go into the store and buy theproducts. Still have some time to of these ingredients to cook adelicious dinner.Dinner is the end of the day, and what it will be- will have an impact on the next day. And so on. For dinner youcan prepare a simple salad, but you can bake fish, broil the meat.Depending on the season change our eating habits. Winter dinner canbe more dense, and Vice versa in the summer is easy. We have manychildren, and for them family dinner is always great. Dinner is thetime when the whole family gathers together. What to cook recipes -look, choose, cook.After a hard working day, breaking the trafficjams or the crush of urban transport and returning home, we oftenare simple and at the same time a complex issue. How to cook quickand tasty dinner? Despite the fact that the effort to preparecomplicated dishes we often do still want to please yourself andyour family a delicious, mouth-watering dinner, so that will allowyou to get away from the daily challenges to relax and unwind.Ofcourse, you can do semi or sad to chew sandwiches with tea. But,you see, it is not our method! Only delicious home-cooked meals cangather at the table the whole family to cheer you up and to give usa real warm home. socscimed so easy and pleasant to discuss withloved ones all the events of the day, along the way, tastingaromatic, saturated warm and caring home-cooked meals. It onlyremains to pick recipes that will help to diversify our menu,without requiring excessive time and effort.And it isn't hard.Moreover, to prepare a quick and tasty dinner is very very easy!Most nutritionists advise not to overload the stomach at night tooheavy and fatty foods. And these recommendations are greatlysimplify our task. For example, delicious steak, served with alight salad will be a good dinner, and cooking does not take muchtime. Tender chicken breast, steamed fragrant and delicious salmon,lightly fried in vegetable oil, delicious hot seafood salad - avariety of quick to prepare, but delicious and appetizing dishesimmensely. No more difficult and dealing with the side dishes.Light salad of fresh greens will cheer up your bright and saturatedvegetable salutogenic valuable nutrients and vitamins, boiled ricewill require only 15 minutes to cook, but it will saturate, notburdening the stomach. A little spice and fresh herbs will give anydish a bright aroma and create the atmosphere of coziness and homeheat.To ease your problem and to help those who are not yet fullyconfident in the kitchen today Cooking Eden" has carefullycollected and recorded most interesting recipes that will help youto prepare quick and tasty dinner and please your blestyaschayahome cooking.How many times we have all faced a similar problem:all the dishes seem commonplace, in the recipe book lacksdiversity. However, my husband is already rushing home, waiting fora nice dinner. What can you do? Here You will find the answer toyour question!
Loading...